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 A B S T R A C T

With the continuous development of Network Function Virtualization (NFV) technology, Virtual Network 
Function (VNF) migration has become a crucial approach to optimizing network resource utilization, reducing 
service latency, and improving service quality. However, in dynamic network environments, VNF migration 
faces challenges such as resource overload, service request prioritization, migration cost optimization, routing 
overhead, and energy consumption. To address these challenges, this paper proposes a priority-aware and 
multi-objective optimization-based VNF migration algorithm, namely the Lagrangian Fish Optimization for 
VNF Migration (LFO-VNM) Algorithm. This algorithm integrates the Lagrangian relaxation method with 
the Artificial Fish Swarm Algorithm (AFSA) to dynamically adjust resource allocation and migration paths, 
optimizing migration cost, network performance, and node energy consumption while prioritizing high-priority 
service requests. First, a Mixed-Integer Linear Programming (MILP) model is established to quantify the impact 
of VNF migration on network link load, node resource consumption, and service performance. Based on this, 
a multi-objective optimization model is formulated, considering network bandwidth, latency, migration cost, 
and energy consumption. This model is decomposed into a series of linear subproblems, which are more 
efficiently solved using the Lagrangian relaxation method. Finally, leveraging the global search capability of 
AFSA, an efficient solution algorithm, LFO-VNM, is designed to optimize VNF migration decisions. Experimental 
results demonstrate that the proposed algorithm not only improves computational efficiency but also effectively 
reduces total cost and energy consumption, outperforming existing migration algorithms across various network 
topologies. This study provides an effective solution for VNF migration and resource scheduling in complex 
network environments.
1. Introduction

With the rise of Network Function Virtualization (NFV) [1] tech-
nology, the traditional network architecture’s reliance on dedicated 
hardware gradually reveals its limitations, making it difficult to meet 
the increasingly complex and dynamic service demands. NFV enhances 
network flexibility and scalability by decoupling network functions 
from dedicated hardware and running them on general-purpose com-
puting devices. It also enables efficient resource utilization and flexible 
deployment through virtualization. As one of the core technologies 
of NFV, Virtual Network Functions (VNFs) run in the form of vir-
tual machines or containers, and multiple VNF instances are chained 
together through Service Function Chains (SFC) [2] to provide end-
to-end network services. SFC, by combining the advantages of NFV 
and Software-Defined Networking (SDN) [3,4], not only enables dy-
namic management of service chains but also optimizes the mapping 
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of physical network resources. As shown in Fig.  1, Network Function 
Virtualization transforms physical devices such as load balancers, fire-
walls, and network address translators into virtual functions through 
the virtualization layer, establishing the relationship between logical 
and physical chains.

However, in dynamic network environments, the random fluctua-
tions of user requests and the uneven distribution of physical resources 
often lead to node or link resource overload. This not only increases 
service latency and may even cause service interruptions, but also 
significantly reduces the overall resource utilization efficiency of the 
network, thereby affecting the user experience. To mitigate these issues, 
VNF migration technology has emerged [5]. By migrating VNFs from 
overloaded nodes to low-load nodes, VNF migration can effectively 
balance resource allocation and improve network performance. How-
ever, the inevitable path adjustments, routing overhead, and increased 
energy consumption during the migration process further complicate 
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Fig. 1. Network Function Virtualization diagram.
resource management, while also impacting the cost efficiency and 
service quality assurance of operators.

In recent years, researchers have conducted in-depth explorations 
into VNF migration strategies [6,7], proposing various methods to op-
timize network performance and resource allocation [8], providing new 
solutions for service quality assurance in dynamic network environ-
ments [9–11]. Although existing studies [12–14] have achieved certain 
results in optimizing Quality of Service (QoS) metrics, most methods 
fail to fully consider environmental changes, making it difficult to 
adapt to the large-scale VNF migration needs in complex dynamic 
environments. Additionally, there are notable deficiencies in the adapt-
ability of existing research regarding multi-objective optimization and 
global resource allocation. For instance, most methods assume that 
a VNF instance (VNFI) is used by a single Service Function Chain 
(SFC), neglecting the complexity of migration strategies in scenarios 
where VNFI is shared among multiple SFCs. Under this assumption, the 
migration design is relatively simple, only considering the impact of a 
single SFC. However, in practical networks, VNFI sharing is common, 
and its migration often generates a cascading impact on all associated 
SFCs, significantly increasing the complexity of migration strategy de-
sign. Furthermore, in dynamic networks, multiple nodes or links may 
become overloaded simultaneously, requiring the concurrent migration 
of multiple VNFI instances, yet research on this concurrent migration 
problem remains relatively scarce. More importantly, existing methods 
predominantly focus on optimizing specific objectives [15–17] and give 
insufficient consideration to trade-offs between multiple objectives. For 
instance, [12] employs a graph neural network coupled with deep 
reinforcement learning to adaptively capture traffic dynamics, yet its 
design is confined to a single trade-off between migration latency and 
computational efficiency; it neither integrates migration cost, energy 
consumption, or end-to-end performance into its optimization objec-
tive, nor can it satisfy real-time requirements due to protracted training 
and inference times in large-scale topologies. Similarly, [13] proposes 
a heuristic framework for SFC routing and VNFI migration that incor-
porates energy expenditure and reconfiguration overhead but depends 
on static load thresholds and a Markov decision process, rendering it 
incapable of dynamically responding to sudden, elastic traffic surges 
in deployments spanning thousands of nodes. Finally, [16] models 
SFC migration via open Jackson networks and introduces the PHS 
and AUB heuristics to minimize average delay; although effective in 
latency reduction, this approach omits migration overhead and energy 
metrics, overlooks fairness in resource allocation and priority-aware 
guarantees, and lacks any assessment of convergence properties or 
scheduling overhead under large-scale, heterogeneous conditions.. At 
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the same time, these methods have limitations in handling service pri-
orities, which may result in inadequate service quality for high-priority 
requests, thereby affecting the overall performance of the service chain. 
Therefore, how to effectively address resource overload, enhance multi-
objective optimization capabilities, and prioritize high-priority service 
requests in dynamic environments has become a core issue that requires 
urgent resolution in current research.

To address these challenges, this study proposes a VNF migration 
strategy that combines priority awareness and multi-objective opti-
mization. The strategy dynamically adjusts resource allocation and 
migration paths, optimizing not only migration costs and network 
performance but also ensuring the service quality of high-priority tasks, 
thereby enhancing the service efficiency and stability in dynamic net-
work environments. The innovation of this study lies in improving 
the performance of existing methods in joint multi-objective optimiza-
tion and service priority assurance, offering a novel approach to re-
source scheduling in complex dynamic network environments. The 
contributions of this paper are as follows:

1. We designed a multi-dimensional priority scheduling model that 
incorporates service chain length as an additional dimension 
beyond bandwidth and end-to-end latency, forming a tightly 
coupled priority score. SFC requests are then scheduled in order 
based on this score, improving the utilization of critical links and 
computing resources as well as the QoS of high-priority services.

2. We constructed a mixed integer linear programming model of 
migration cost, routing overhead, and energy consumption. We 
used Lagrange relaxation to embed resource and QoS constraints 
into the objective function, and combined the artificial fish 
school algorithm to balance all metrics, achieving lower migra-
tion overhead and better performance.

3. We propose a multi-dimensional node scoring mechanism based 
on remaining computing power, remaining storage, and net-
work connectivity. Node priorities are dynamically updated to 
provide quantitative decision-making for VNF deployment and 
migration, improving convergence speed and load balancing 
effectiveness.

The rest of the paper is organized as follows: Section 2 discusses 
related work on VNF migration. Section 3 presents the problem formu-
lation. Section 4 introduces our proposed algorithm. Section 5 analyzes 
the numerical results, and finally, Section 6 concludes the paper.

2. Related work

In this section, we introduce representative works related to VNF 
migration.
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In recent years, significant progress has been made in research on 
Virtual Network Function (VNF) migration and Service Function Chain 
(SFC) reconfiguration. [18] proposes the partial migration model for 
the first time, designed for scenarios where a single VNF instance is 
shared across multiple SFCs. Their approach selectively migrates only 
those VNFs whose relocation yields the greatest reduction in end-to-end 
latency, thereby minimizing both overall link delay and migration over-
head. Additionally, it integrates real-time load monitoring functionality 
to dynamically adjust the migration subset based on fluctuations in 
resource usage.  Although this method reduces unnecessary migration 
overhead, it focuses solely on local optimization during the migration 
process, without addressing global resource management. Some studies 
focus on VNF cluster migration and embedding optimization. [19] 
investigates the VNF cluster migration problem, where VNF instances 
within the same cluster are often reused by multiple service chains and 
proposed an Integer Linear Programming (ILP) model and designing 
an efficient migration algorithm to reduce embedding costs.directly 
supporting the efficient migration of multiple SFCs sharing a single VNF 
instance. However, this method is primarily suited to static topologies 
and has limited adaptability in dynamic environments. [20] proposes 
a priority-aware VNF migration method based on deep reinforcement 
learning (PAVM), which optimizes VNF migration strategies by learning 
the network state. Although this method enhances the intelligence 
of migration, reinforcement learning approaches have slower conver-
gence rates and higher computational costs, and they do not optimize 
global resource management for SFC requests. [21] investigates the 
SFC migration problem in 5G edge networks and proposes a mobility-
aware migration strategy, focusing on optimizing the impact of user 
mobility on SFCs. This method demonstrates strong adaptability in edge 
computing environments, but its applicability to data center environ-
ments is limited, and it does not consider migration cost optimization. 
Some studies focus on multi-criteria optimization to comprehensively 
improve VNF migration performance. [22] proposes a multi-criteria 
decision-making method aimed at minimizing the impact of VNF mi-
gration on multiple SFCs. This method considers VNF sharing and 
reduces the damage to Quality of Service (QoS) by optimizing mi-
gration decisions. However, it does not fully account for dynamic 
changes in network resources and does not involve migration cost op-
timization, making it difficult to adapt to large-scale dynamic network 
environments. [23] addresses dynamic SFC scheduling in geograph-
ically distributed cloud environments and proposes a cost-effective 
flow migration framework (CFM) that enhances SFC efficiency by 
optimizing migration costs and network performance after migration. 
Although CFM performs well in load balancing, it primarily focuses 
on flow migration rather than VNF migration decisions and does not 
consider the impact of SFC request priorities on resource allocation. 
With the development of Digital Twin (DT) technology, some studies 
begin to explore methods that combine resource demand prediction 
with intelligent migration. [24] combines Deep Reinforcement Learning 
(DRL) and Federated Learning (FL) to propose a resource demand 
prediction and VNF migration optimization method, mainly applied 
in DT networks. This method optimizes migration strategies by pre-
dicting resource demands, but its computational complexity is high, 
training costs are large, and it focuses more on resource prediction 
than directly optimizing VNF migration strategies. Additionally, some 
studies propose joint optimization methods for data center environ-
ments. [25] investigates the VNF migration problem in data center 
environments and proposes a joint resource optimization and latency-
aware VNF migration method. This method uses an improved Genetic 
Algorithm (IHGE) to optimize VNF migration, assuming that each 
VNFI can be concurrently invoked by multiple SFCs, the cumulative 
link delay caused by shared instance migration and the cost savings 
from instance reuse are simultaneously incorporated into the objective 
function and constraints to optimize migration decisions. To support 
dynamic resource allocation, the algorithm periodically re-evaluates 
node load and re-initiates the IHGE search to adapt to changes in 
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traffic patterns. However, this method does not incorporate service 
request priorities into the model, which may result in insufficient 
resource allocation for critical services and consequently impact their 
service quality.[26] introduces a multi-objective linear programming 
(MOLP) model to optimize dynamic SFC deployment in 5G networks, 
minimizing user service latency and VNF migration costs. The Trade-
LCM framework proposed in the paper achieves better SFC mapping 
under network load imbalances, improving QoS. However, this method 
primarily focuses on the trade-off between migration costs and latency 
and does not fully consider global network resource optimization, 
with limited adaptability to dynamic environments. [27] proposes a 
Migration Index to measure the trend of node load changes and de-
signs a fast and efficient heuristic migration algorithm based on this. 
Experimental results show that this method outperforms traditional 
deep learning methods in traffic prediction accuracy and can effec-
tively reduce migration costs by approximately 20% . However, the 
limitation of this method lies in its over-reliance on traffic prediction 
accuracy, as large prediction errors may lead to unstable migration 
decisions. Additionally, this method primarily optimizes a single mi-
gration cost and does not address the priority scheduling issue of SFC
requests.

Current research has made significant progress in optimizing mi-
gration paths, reducing migration costs and latency, and improving 
migration efficiency. However, model complexity, computational over-
head, and real-time performance still limit its application in large-scale 
dynamic network environments. Existing methods struggle to strike 
a balance between computational efficiency and optimization quality, 
particularly in dynamic resource allocation, load balancing, and service 
priority assurance. To address this, this paper proposes a VNF migra-
tion algorithm based on multi-objective optimization and intelligent 
scheduling, integrating priority-awareness mechanisms, Lagrangian re-
laxation, and the Artificial Fish Swarm Algorithm (AFSA). The proposed 
method systematically optimizes migration costs, latency, energy con-
sumption, and global resource utilization. It balances dynamic adapt-
ability with computational efficiency, enhancing the stability of VNF 
migration while improving resource scheduling flexibility and service 
quality. To better illustrate the contributions of this paper, a detailed 
comparison of related works is provided in Table  1.

3. System model

In this section, we describe the system model from the follow-
ing four aspects. For reference, the symbols used in this paper are 
summarized in Table  2. 

3.1. Network model

The physical network is modeled as an undirected connected graph, 
denoted as 𝐺 = (𝑁,𝐿), where 𝑁 represents the set of physical nodes, 
and 𝐿 represents the set of physical links. The resources of each node 
𝑛𝑖 are defined as a triplet 𝑛𝑖 = {𝐶𝑖,𝑀𝑖, 𝐵𝑖}, representing CPU resources, 
memory resources, and bandwidth resources, respectively. 𝐶 𝑡𝑜𝑡𝑎𝑙

𝑖  de-
notes the total CPU resource capacity of node 𝑛𝑖, and 𝑀 𝑡𝑜𝑡𝑎𝑙

𝑖  denotes 
the total memory resource capacity of node 𝑛𝑖. Each link 𝑒(𝑖,𝑗) ∈ 𝐸 has 
properties 𝐵𝑡𝑜𝑡𝑎𝑙

(𝑖,𝑗)  and 𝐿(𝑖,𝑗), where 𝐵𝑡𝑜𝑡𝑎𝑙
(𝑖,𝑗)  represents the maximum link 

bandwidth capacity between node 𝑛𝑖 and node 𝑛𝑗 , and 𝐿(𝑖,𝑗) represents 
the transmission delay of link 𝑒(𝑖,𝑗). Additionally, the CPU resources of 
each node limit the number of shared VNF (Virtual Network Function) 
instances it can support. It is important to note that physical network 
nodes have different VNF support capabilities. Each node 𝑛𝑖 can only 
support a specific set of VNFs, 𝑉𝑖 ∈ 𝑉 , where 𝑉  is the set of all VNFs 
in the system. This limitation requires that the support capabilities of 
the nodes be fully considered when deploying and migrating VNFs.This 
paper assumes that all pending SFC requests have been initially de-
ployed by the NFV orchestrator before the service arrives, each VNF 
in the service chain has been assigned to the corresponding physical 
node and an end-to-end link has been established.  Overload detection 
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Table 1
Comparison of related works. 
 Literatures VNF sharing Dynamic resource 

allocation
Service request 
priority

Migration cost Post-migration 
routing cost

Node energy 
consumption cost

 

 [18]-2024 √ √

×
√

×
√  

 [19]-2024 √

×
√ √

× ×  
 [20]-2022 ×

√ √

×
√

×  
 [21]-2024 √ √

×
√

× ×  
 [22]-2019 √ √ √

×
√ √  

 [23]-2024 ×
√

×
√

×
√  

 [24]-2023 ×
√ √ √

× ×  
 [25]-2021 √ √

× × × ×  
 [26]-2023 ×

√ √

×
√ √  

 [27]-2021 × ×
√ √

×
√  

 Ours √ √ √ √ √ √  
∙ In this table, ‘‘√’’ means that this work takes this element into account, while ‘‘×’’ means that it does not.
Table 2
Summary of notations. 
 Notation Definition  
 𝐺 = (𝑁,𝐿) Physical network graph, where 𝑁 represents the set of nodes, and 𝐿 represents the set of physical links. 
 𝐶 𝑡𝑜𝑡𝑎𝑙

𝑖 ,𝑀 𝑡𝑜𝑡𝑎𝑙
𝑖 , 𝐵𝑡𝑜𝑡𝑎𝑙

(𝑖,𝑗) Total CPU, memory, and bandwidth resource capacities of node 𝑛𝑖.  
 𝑒(𝑖,𝑗) Physical link connecting nodes 𝑛𝑖 and 𝑛𝑗 .  
 𝐵𝑡𝑜𝑡𝑎𝑙

(𝑖,𝑗) Maximum link bandwidth capacity of link 𝑒(𝑖,𝑗).  
 𝐷(𝑖,𝑗) Transmission distance of link 𝑒(𝑖,𝑗).  
 𝑉𝑖 The set of VNFs supported by node 𝑛𝑖.  
 𝑉 The set of all VNFs in the system.  
 𝑟𝑢 The 𝑢-th SFC request.  
 𝜆𝑢 Traffic demand of the SFC request 𝑟𝑢.  
 𝐷𝑢

𝑚𝑎𝑥 The maximum end-to-end delay limit for SFC request 𝑟𝑢.  
 𝑅𝑘 The resources required to deploy VNF 𝑓 𝑢

𝑘 .  
 𝑅𝑡𝑜𝑡𝑎𝑙

𝑛 The maximum available resource limit of node 𝑛.  
 𝜏𝑢 The processing time slot for SFC request 𝑟𝑢.  
 𝑇̃𝑚𝑖𝑔 The time required to migrate VNF 𝑓 𝑢

𝑘 .  
 𝛾 The fixed migration overhead for migrating VNF 𝑓 𝑢

𝑘 .  
 𝐿(𝑖,𝑗) Transmission delay of link 𝑒(𝑖,𝑗).  
 𝜔1 , 𝜔2 , 𝜔3 Weight coefficients for bandwidth utilization, transmission distance, and link delay.  
 𝑃 𝑚𝑖𝑛

𝑗 The basic energy consumption of node 𝑛𝑗 .  
 𝑃 𝑚𝑎𝑥

𝑗 The maximum energy consumption of node 𝑛𝑗 .  
 𝑈𝑛(𝑡) Resource utilization rate of node 𝑛 at time slot 𝑡.  
 𝛽𝑢 VNF migration time factor, used to measure the impact of migration time on the total cost.  
 𝛿𝑛(𝑡) Binary variable indicating whether node 𝑛 has sufficient remaining resources at time slot 𝑡.  
 𝑉 (𝑓 𝑢

𝑘 )
𝑛 Binary variable indicating whether node 𝑛 supports VNF 𝑓 𝑢

𝑘 .  
 𝑋𝑢𝑘𝑛(𝑡) Binary variable indicating whether VNF 𝑓 𝑢

𝑘 is deployed on node 𝑛 at time slot 𝑡.  
 𝑌𝑢𝑖𝑗 (𝑡) Binary variable indicating whether SFC 𝑟𝑢 uses link 𝑒(𝑖,𝑗) at time slot 𝑡.  
 𝑍𝑢𝑘𝑛(𝑡) Binary variable indicating whether VNF 𝑓 𝑢

𝑘 is migrated to node 𝑛 at time slot 𝑡.  
and migration in subsequent stages are based on this deployment, and 
the initial mapping process will not be described in detail here.

3.2. SFC request model

In the model, the Service Function Chain (SFC) request is described 
as a sequence of Virtual Network Functions (VNFs) that must be exe-
cuted in a specific order to provide end-to-end network services. Each 
SFC request is represented as a sextuple: 𝑟𝑢 = {𝑠(𝑟𝑢), 𝑑(𝑟𝑢), 𝐹𝑢, 𝜆𝑢, 𝐷𝑢

𝑚𝑎𝑥, 𝜏𝑢}, 
where 𝑠(𝑟𝑢) and 𝑑(𝑟𝑢) denote the source and destination nodes of the 
SFC request, respectively. 𝐹𝑢 = {𝑓 𝑢

1 , 𝑓
𝑢
2 ,… , 𝑓 𝑢

𝐼𝑢
} is the sequence of VNFs 

that must be executed in order to fulfill the network function of the 
service request. The traffic demand of the SFC request is represented 
by 𝜆𝑢, which determines the required network bandwidth for packet 
transmission through the service chain. 𝐷𝑢

𝑚𝑎𝑥 represents the maximum 
end-to-end transmission delay limit for the SFC request, ensuring that 
data is transmitted within an acceptable time frame. The physical 
resources consumed by each VNF 𝑓 𝑢

𝑘  during execution are primarily 
reflected in CPU and memory consumption. Additionally, the traffic de-
mand 𝜆𝑢 of the SFC request directly affects its transmission bandwidth 
requirement. 𝜏𝑢 represents the time slot in which the request occurs. 
Within the time slot 𝜏𝑢, the deployment of all VNFs and the allocation 
of transmission paths for the SFC request must be completed to ensure 
service quality.
4 
3.3. Priority-aware model

3.3.1. Priority-awareness of network nodes
To ensure the rational selection of target nodes during VNF migra-

tion, a priority-aware mechanism based on node resource utilization, 
load balancing, and network connectivity is introduced. For any node 
𝑛𝑗 , the priority calculation formula is as follows: 

𝑅𝑗 = 𝛼 ⋅
𝐶𝑟𝑒𝑚𝑎𝑖𝑛
𝑗

𝐶 𝑡𝑜𝑡𝑎𝑙
𝑗

+ 𝛽 ⋅
𝑀𝑟𝑒𝑚𝑎𝑖𝑛

𝑗

𝑀 𝑡𝑜𝑡𝑎𝑙
𝑗

+ 𝛾 ⋅
𝐵𝑟𝑒𝑚𝑎𝑖𝑛
𝑗

𝐵𝑡𝑜𝑡𝑎𝑙
𝑗

(1)

𝐶̄ =

∑

𝑛∈𝑁
𝐶𝑢𝑠𝑒𝑑
𝑛

𝐶 𝑡𝑜𝑡𝑎𝑙
𝑛

|𝑁|

(2)

𝑀̄ =

∑

𝑛∈𝑁
𝑀𝑢𝑠𝑒𝑑

𝑛
𝑀 𝑡𝑜𝑡𝑎𝑙

𝑛

|𝑁|

(3)

𝐿𝑗 = 1 −
|

|

|

|

|

|

𝐶𝑢𝑠𝑒𝑑
𝑗

𝐶 𝑡𝑜𝑡𝑎𝑙
𝑗

− 𝐶̄
|

|

|

|

|

|

−
|

|

|

|

|

|

𝑀𝑢𝑠𝑒𝑑
𝑗

𝑀 𝑡𝑜𝑡𝑎𝑙
𝑗

− 𝑀̄
|

|

|

|

|

|

(4)

𝐶𝑗 =
1

avg_hop(𝑛𝑗 )
(5)

𝑃𝑗 = 𝑤1 ⋅ 𝑅𝑗 +𝑤2 ⋅ 𝐿𝑗 +𝑤3 ⋅ 𝐶𝑗 (6)
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In this model, 𝑅𝑗 represents the resource availability of node 𝑛𝑗 , 
which indicates the current availability of resources at the node. A 
higher value of 𝑅𝑗 means that the node has more available resources. 
𝐶𝑟𝑒𝑚𝑎𝑖𝑛
𝑗  denotes the current available CPU resources of node 𝑛𝑗 , and 

𝐶 𝑡𝑜𝑡𝑎𝑙
𝑗  denotes the total CPU resources of node 𝑛𝑗 . 𝑀𝑟𝑒𝑚𝑎𝑖𝑛

𝑗  represents 
the current available memory resources of node 𝑛𝑗 , and 𝑀 𝑡𝑜𝑡𝑎𝑙

𝑗  denotes 
the total memory resources of node 𝑛𝑗 . 𝐵𝑟𝑒𝑚𝑎𝑖𝑛

𝑗  represents the current 
available bandwidth resources of node 𝑛𝑗 , while 𝐵𝑡𝑜𝑡𝑎𝑙

𝑗  denotes the total 
bandwidth resources of node 𝑛𝑗 .

𝛼, 𝛽, and 𝛾 are the weight coefficients used to balance CPU, memory, 
and bandwidth in the resource availability calculation. This formula 
calculates the ratio of remaining resources at node 𝑛𝑗 , using a weighted 
approach to measure the remaining resources of CPU, memory, and 
bandwidth, which reflects the degree of resource availability at the 
node. 𝐿𝑗 represents the load balancing of node 𝑛𝑗 , which indicates how 
close the node’s resource utilization is to the network’s average load. 
A higher value of 𝐿𝑗 means that the node’s load is more balanced. 
𝐶𝑢𝑠𝑒𝑑
𝑗  denotes the CPU resources used by node 𝑛𝑗 , and 𝐶̄ represents 
the average CPU utilization across all nodes in the network. 𝑀𝑢𝑠𝑒𝑑

𝑗
denotes the memory resources used by node 𝑛𝑗 , and 𝑀̄ represents 
the average memory utilization across all nodes in the network. This 
formula calculates the load balancing of node 𝑛𝑗 by measuring the 
deviation between the CPU and memory utilization of the node and the 
average utilization across the network. The smaller the deviation, the 
closer 𝐿𝑗 is to 1, which indicates that the node’s load is more balanced.

𝐶𝑗 represents the network connectivity of node 𝑛𝑗 , calculated by the 
average network hop count of the node. 𝑃𝑗 represents the priority of 
node 𝑛𝑗 , which is used to measure the importance of the node in the 
VNF migration process. A higher value of 𝑃𝑗 means that the node is 
more suitable as the target node for VNF migration. 𝑤1, 𝑤2, and 𝑤3
are the weight coefficients for resource availability, load balancing, and 
connectivity in the priority calculation. The importance of these factors 
may vary depending on the network environment. In this paper, equal 
weights are used to enhance the algorithm’s adaptability, ensuring 
that it maintains optimal performance in different application scenarios 
without requiring complex parameter tuning for specific environments. 
This formula calculates the comprehensive priority score of each node 
by weighting resource availability, load balancing, and connectivity. 
Nodes with higher priority are given preference during the VNF mi-
gration process to ensure that the target node has sufficient resources, 
balanced load, and good connectivity. This priority calculation method 
helps in selecting target nodes with lighter loads and sufficient re-
sources during VNF migration, achieving better migration performance 
under network resource constraints.

3.3.2. Priority-awareness of SFC
To handle SFC requests more reasonably during VNF migration and 

resource allocation, this paper introduces a Service Function Chain 
(SFC) priority-awareness mechanism. This mechanism comprehensively 
considers the bandwidth requirements, end-to-end delay constraints, 
and service chain length of the SFC requests to calculate the priority of 
each SFC request, thereby ensuring fairness and efficiency in resource 
allocation. For any SFC request 𝑟𝑢, its priority is calculated as follows: 
𝑃 𝑢
𝑡𝑜𝑡𝑎𝑙 = 𝜔1 ⋅ 𝑃

𝑢
𝑏𝑤 + 𝜔2 ⋅ 𝑃

𝑢
𝑙𝑎𝑡𝑒𝑛𝑐𝑦 + 𝜔3 ⋅ 𝑃

𝑢
𝑙𝑒𝑛𝑔𝑡ℎ (7)

𝑃 𝑢
𝑏𝑤 =

𝐵𝑚𝑎𝑥 − 𝜆𝑢
𝐵𝑚𝑎𝑥

(8)

𝑃 𝑢
𝑙𝑎𝑡𝑒𝑛𝑐𝑦 =

𝐷𝑢
𝑚𝑎𝑥 −𝐷𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝐷𝑢
𝑚𝑎𝑥

(9)

𝑃 𝑢
𝑙𝑒𝑛𝑔𝑡ℎ = 1

|𝐹𝑢|
(10)

Where 𝑃 𝑢
𝑏𝑤 represents the bandwidth priority of the SFC request 

𝑟𝑢,𝐵max indicates the maximum bandwidth requirement among all 
pending SFC requests in the system. 𝑃 𝑢  represents the delay priority 
𝑙𝑎𝑡𝑒𝑛𝑐𝑦

5 
of the SFC request 𝑟𝑢, and 𝑃 𝑢
𝑙𝑒𝑛𝑔𝑡ℎ represents the service chain length 

priority of the SFC request. 𝐷𝑢
𝑚𝑎𝑥 denotes the maximum end-to-end 

delay for the SFC request, and 𝐷𝑐𝑢𝑟𝑟𝑒𝑛𝑡 denotes the current end-to-end 
delay of the network path. |𝐹𝑢| represents the number of VNFs required 
for the SFC request. 𝜔1, 𝜔2, and 𝜔3 are the weight coefficients for 
bandwidth, delay, and service chain length, respectively. Since it is not 
possible to determine in advance which factor is more critical than the 
others, we set equal weights to ensure the algorithm is applicable in a 
broader range of application scenarios and does not exhibit imbalance 
under specific conditions. The design of this priority mechanism aims 
to balance multi-dimensional resource demands and ensure reasonable 
allocation of network resources during VNF deployment and migration. 
The priority-aware mechanism proposed in this paper aims to achieve 
better resource allocation and management in VNF migration and SFC 
request processing by integrating resource availability, load balancing, 
and network connectivity. The priority-awareness of network nodes is 
determined through multi-dimensional calculations of the suitability of 
candidate nodes, allowing for the selection of optimal target nodes in 
VNF migration. The priority-awareness of service function chains cal-
culates priorities based on bandwidth requirements, delay constraints, 
and service chain length, prioritizing resource allocation to critical SFC 
requests.

This dual-priority-awareness mechanism effectively enhances the 
utilization efficiency of network resources, reduces network conges-
tion, and ensures service quality. By considering multiple key factors 
within a multi-objective optimization framework for resource allo-
cation, this model provides a scientifically sound and rational VNF 
migration and SFC request allocation scheme for complex NFV environ-
ments, ultimately achieving the optimization of network performance 
and resource utilization.

3.4. VNF migration model

To illustrate the partial VNF migration model, we first describe the 
utilization relationships between SFCs and VNFs, the associations be-
tween SFCs and physical links, and the mapping relationships between 
VNFs and nodes. This section defines the key binary and continuous 
variables in the VNF migration model. 

𝑋𝑢𝑘𝑛(𝑡) =

{

1, if VNF 𝑓 𝑢
𝑘  is deployed on node 𝑛 at time slot 𝑡

0, otherwise
(11)

𝑌𝑢𝑖𝑗 (𝑡) =

{

1, if SFC request 𝑟𝑢 uses link 𝑒𝑖𝑗 at time slot 𝑡
0, otherwise

(12)

𝑍𝑢𝑘𝑛(𝑡) =

{

1, if VNF 𝑓 𝑢
𝑘  is migrated to node 𝑛 at time slot 𝑡

0, otherwise
(13)

These variables are used to characterize the usage states of nodes 
and links during the migration process and form the mathematical 
foundation for the subsequent objective functions and constraints.

3.5. Problem formulation

This section introduces the mathematical formulation of the multi-
objective SFC deployment problem we propose, including the con-
straints and objectives.

3.5.1. Constraints
(1) Each node can deploy multiple VNFs, but it must satisfy the 

resource limitations of the node and the VNF compatibility constraints. 

∑

(𝑢,𝑘)
𝑋𝑢𝑘𝑛(𝑡) ⋅ 𝑅𝑘 ≤ 𝑅𝑡𝑜𝑡𝑎𝑙

𝑛 (14)

(2) Not all nodes can deploy any type of VNF. Only VNFs that 
meet the node’s capability conditions can be deployed on the respective 
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nodes. 
𝑋𝑢𝑘𝑛(𝑡) ≤ 𝑉

(𝑓 𝑢
𝑘 )

𝑛 (15)

(3) When VNF 𝑓 𝑢
𝑘  is migrated to a new node, the node must have 

sufficient remaining resources and support the specific VNF type. 

𝑍𝑢𝑘𝑛(𝑡) ≤ 𝑉
(𝑓 𝑢

𝑘 )
𝑛 ⋅ 𝛿𝑛(𝑡) (16)

(4) The VNFs must be executed in the order specified in the SFC 
request to ensure service integrity: 
∑

𝑛∈𝑁
𝑋𝑢(𝑘+1)𝑛(𝑡) ≤

∑

𝑛∈𝑁
𝑋𝑢𝑘𝑛(𝑡) (17)

This constraint ensures that 𝑓 𝑢
𝑘  must be completed before 𝑓 𝑢

𝑘+1 can 
be deployed on the physical node.It thereby enforces service chain in-
tegrity by preventing out-of-order deployment. This mechanism is dis-
tinct from the minimum post-migration runtime 𝜏𝑢, which guarantees 
each migrated VNF remains stably online for the required duration.

(5) There must be a physical link between the migrated VNFs, 
forming a complete transmission path: 
𝑋𝑢𝑘𝑛(𝑡) +𝑋𝑢(𝑘+1)𝑛(𝑡) ≤

∑

(𝑖,𝑗)∈𝐸
𝑌𝑢𝑖𝑗 (𝑡) (18)

This constraint ensures that if 𝑓 𝑢
𝑘  and 𝑓 𝑢

𝑘+1 are deployed on different 
nodes, a valid network path must exist. Specifically, when these two 
VNFs reside on distinct physical nodes, the sum on the left-hand 
side equals 2, and the right-hand side requires at least one active 
link indicator 𝑌𝑢,𝑖,𝑗 (𝑡) = 1 along the edges connecting their hosting 
nodes. Conversely, if they share the same node, the left-hand side is at 
most 1 and the constraint is trivially satisfied without additional path 
requirements. This formulation thus guarantees physical connectivity 
for each adjacent VNF pair in the service chain, preserving end-to-end 
service integrity.

(6) Node resources cannot exceed their physical capacity, and the 
migrated VNF must comply with the resource limits: 
𝐶𝑢𝑠𝑒𝑑
𝑛 (𝑡) =

∑

(𝑢,𝑘)
𝑋𝑢𝑘𝑛(𝑡) ⋅ 𝐶

𝑐𝑝𝑢
𝑘 ≤ 𝐶 𝑡𝑜𝑡𝑎𝑙

𝑛 (19)

𝑀𝑢𝑠𝑒𝑑
𝑛 (𝑡) =

∑

(𝑢,𝑘)
𝑋𝑢𝑘𝑛(𝑡) ⋅𝑀𝑚𝑒𝑚

𝑘 ≤ 𝑀 𝑡𝑜𝑡𝑎𝑙
𝑛 (20)

𝐵𝑢𝑠𝑒𝑑
𝑛 (𝑡) =

∑

(𝑢,𝑘)
𝑋𝑢𝑘𝑛(𝑡) ⋅ 𝐵𝑏𝑎𝑛𝑑

𝑘 ≤ 𝐵𝑡𝑜𝑡𝑎𝑙
𝑛 (21)

Here, 𝐶cpu
𝑘  and 𝑀mem

𝑘  denote the CPU and memory resource con-
sumption of VNF instance 𝑣𝑘 on its hosting node; 𝐵band

𝑘  indicates its 
bandwidth demand on the node’s network interfaces. These constraints 
ensure that, at any time, the aggregated resource usage on node 𝑛 does 
not exceed its physical availability.

(7) The data transmitted over the link must not exceed the physical 
link’s bandwidth: 
𝐵𝑢𝑠𝑒𝑑
(𝑖,𝑗) (𝑡) =

∑

𝑢
𝑌𝑢𝑖𝑗 (𝑡) ⋅ 𝜆𝑢 ≤ 𝐵𝑡𝑜𝑡𝑎𝑙

(𝑖,𝑗) (22)

(8) The end-to-end delay on the link must meet the maximum delay 
limit of the SFC: 

∑

(𝑖,𝑗)∈𝑃(𝑖,𝑗)

𝐷𝑢𝑖𝑗 (𝑡) ≤ 𝐷𝑢
𝑚𝑎𝑥 (23)

(9) When VNF migration occurs, resources must be reallocated at 
the target node: 
𝑍𝑢𝑘𝑛(𝑡) ≥ 𝑋𝑢𝑘𝑛(𝑡) −𝑋𝑢𝑘𝑛(𝑡 − 1) (24)

(10) After the VNF migration is completed, the resource status of the 
target node must be updated to reflect the change in resource usage. 
𝑅𝑢𝑠𝑒𝑑
𝑛 (𝑡 + 1) = 𝑅𝑢𝑠𝑒𝑑

𝑛 (𝑡) +
∑

(𝑢,𝑘)
𝑍𝑢𝑘𝑛(𝑡) ⋅ 𝑅𝑘 (25)

This constraint ensures that the resource allocation after migration 
is correctly updated to reflect the new resource consumption.
6 
3.5.2. Objective
The total cost of VNF migration consists of three components: mi-

gration cost, post-migration routing cost, and node energy consumption 
cost.

Migration cost: The migration cost primarily measures the ad-
ditional resource consumption and service disruption risk caused by 
the VNF migration process. In a network environment, when a VNF 
migrates from the source node to the target node, it consumes trans-
mission resources and may trigger service disruptions. In this paper, we 
reasonably consider bandwidth consumption, migration data volume, 
and link transmission distance as the main factors affecting migration 
cost, which aligns with actual network resource consumption. We 
express it as follows: 
𝐶𝑚𝑖𝑔(𝑡) =

∑

(𝑢,𝑘,𝑛)
𝑍𝑢𝑘𝑛(𝑡) ⋅

(

𝜆𝑢 ⋅𝐷(𝑖,𝑗) + 𝛽𝑢 ⋅ 𝑇𝑚𝑖𝑔 + 𝛾
)

(26)

Post-migration routing cost: The routing cost measures the effi-
ciency of network transmission during migration and its pressure on 
links, which is particularly useful for dynamic traffic management. In 
this paper, we fully consider the congestion level of the links and trans-
mission distance as important factors influencing network performance, 
which aligns with congestion control mechanisms in actual network 
transmission. We express it as follows: 

𝐶𝑟𝑜𝑢𝑡𝑒(𝑡) =
∑

(𝑖,𝑗)∈𝐸
𝑌(𝑖,𝑗) ⋅

(

𝜔1 ⋅
𝜆𝑢

𝐵(𝑖,𝑗)
+ 𝜔2 ⋅𝐷(𝑖,𝑗) + 𝜔3 ⋅ 𝐿(𝑖,𝑗)

)

(27)

Node energy consumption cost: The energy consumption cost 
reflects the energy consumed by nodes in the network when processing 
SFC requests and performing migration. The energy consumption cost 
directly affects the network’s sustainability and energy efficiency man-
agement. We effectively consider the node’s base energy consumption 
and the energy variation dependent on the load, which aligns with 
the energy consumption characteristics in modern data centers and 
distributed networks. We express it as follows: 

𝑈𝑛(𝑡) =
𝐶𝑢𝑠𝑒𝑑
𝑛 (𝑡)
𝐶 𝑡𝑜𝑡𝑎𝑙
𝑛

+
𝑀𝑢𝑠𝑒𝑑

𝑛 (𝑡)
𝑀 𝑡𝑜𝑡𝑎𝑙

𝑛
(28)

𝐶𝑒𝑛𝑒𝑟𝑔𝑦(𝑡) =
∑

𝑛∈𝑁

[

𝑃𝑚𝑖𝑛
𝑗 + (𝑃𝑚𝑎𝑥

𝑗 − 𝑃𝑚𝑖𝑛
𝑗 ) ⋅ 𝑈𝑛(𝑡)

]

(29)

Finally, we use the following formula to represent our total objec-
tive: 
𝐶𝑡𝑜𝑡𝑎𝑙(𝑡) = 𝐶𝑚𝑖𝑔(𝑡) + 𝐶𝑟𝑜𝑢𝑡𝑒(𝑡) + 𝐶𝑒𝑛𝑒𝑟𝑔𝑦(𝑡) (30)

The core objective of this cost function is to minimize the sum 
of the three components, subject to the resource constraints and QoS 
requirements of network services. It comprehensively considers migra-
tion cost, routing cost, and node energy consumption cost, capturing 
the impact of VNF migration on network performance. It covers the 
multidimensional factors such as bandwidth, transmission distance, link 
congestion, and energy consumption. Supporting dynamic migration 
modeling across multiple time slots, it is applicable to complex dynamic 
NFV environments. In an NFV environment, this objective function can 
effectively guide the selection of VNF migration strategies, reducing the 
risk of service disruptions and network congestion caused by migra-
tion. It helps improve network resource utilization efficiency, reduce 
energy consumption, and enhance overall network performance and 
sustainability.

3.5.3. Complexity of the algorithm
In terms of computational complexity, the core of the LFO-VNM al-

gorithm consists of two modules—AFSA swarm search and Lagrangian 
relaxation—that alternate in an iterative process. In each iteration, 
for a swarm of size 𝑀 , each individual must undergo one evaluation 
of service chain construction, functional graph embedding, and on-
chain scheduling migration, yielding a single-evaluation complexity of 
𝑂(|𝑉 | + |𝐸| +

∑

|SFC |), where |𝑉 | and |𝐸| denote the number of 
𝑢∈ 𝑢
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network nodes and links, respectively, and ∑|SFC| is the total length 
of service chains to be processed in the current time slot. If the total 
number of iterations is 𝑇 , the overall time complexity becomes 𝑂(

𝑇 ⋅𝑀 ⋅
(|𝑉 | + |𝐸| +

∑

|SFC|)
)

. Although this polynomial complexity increases 
significantly with network scale and request volume R, in practical 
deployments, by judiciously choosing the number of iterations and 
swarm size, and leveraging efficient implementation of each evaluation 
stage, LFO-VNM can complete a full dynamic scheduling and migration 
decision within minutes on a typical operator-scale network, thereby 
satisfying the real-time requirements of online deployment.

4. Algorithm design

The VNF migration problem is an NP-Hard [28] multi-objective 
optimization problem, involving multiple optimization objectives such 
as resource allocation, migration cost, energy consumption, and routing 
cost. To address this complex multi-constraint problem, this paper 
proposes a hybrid heuristic algorithm based on Lagrangian Relaxation 
(LR) [29]and the Artificial Fish Swarm Algorithm (AFSA) [30]. This 
method combines the ability of Lagrangian Relaxation to handle re-
source constraints with the global search capability of AFSA to improve 
migration efficiency and resource utilization in large-scale network 
environments.

4.1. Algorithm design overview

In this paper, the proposed Virtual Network Function (VNF) mi-
gration algorithm aims to effectively manage computational and trans-
mission resources in dynamic network environments through a multi-
stage [31,32] optimization strategy, minimizing migration costs. To 
describe the migration process more systematically, VNF migration can 
be divided into the following continuous stages to ensure a compre-
hensive balance between service quality (QoS) and resource utilization 
efficiency. Fig.  2 illustrates the complete system operation implemented 
in Cernet, primarily involving the process of the LFO-VNM algorithm. 
The system first monitors the CPU and memory utilization of each 
physical node in real time and combines this with SFC priority scores 
to identify overloaded nodes experiencing resource bottlenecks due 
to hosting high-priority services. Subsequently, for each VNF to be 
migrated, the system selects a set of mappable nodes from all non-
overloaded nodes across the network based on the VNF’s CPU and 
memory requirements and the remaining end-to-end latency budget 
of its associated SFC. For these candidate nodes, the system calcu-
lates a comprehensive priority score based on available computing 
resources, storage capacity, and network connectivity to calculate a 
comprehensive priority score, and the node with the highest score 
is selected to generate the initial migration mapping, completing the 
node priority deployment of VNFs on overloaded nodes (Algorithm 3). 
Next, the algorithm uses this initial mapping as the starting point for 
the fish swarm population, combines the current global deployment 
status and network resource information, and applies Algorithm 2 
for global search—dynamically switching between foraging, following, 
aggregating, and dispersing behaviors to balance local fine-grained 
search and global multi-peak exploration, while continuously evalu-
ating resource and QoS constraints. Meanwhile, Lagrange relaxation 
techniques are used to relax coupled constraints such as CPU, mem-
ory, and latency into the objective function. After each iteration, the 
corresponding multipliers are updated based on the degree of viola-
tion, and the constraint penalties are fed back into the fitness eval-
uation to guide the subsequent swarm solution away from the infea-
sible solution region. This process is repeated until the swarm con-
verges or no nodes are overloaded, ultimately outputting the optimal 
VNF migration plan. Through the above steps, LFO-VNM achieves a 
closed-loop control process from priority-driven local initial mapping 
7 
to global optimization of multiple behavior patterns, and then to dy-
namic constraint adjustment, demonstrating good reproducibility and 
scalability.

Stage one: Overload Detection and Migration Trigger. Monitor the 
CPU/memory utilization of all physical nodes to identify overloaded 
nodes; filter only the VNFs with the highest resource consumption or 
traffic contribution on these overloaded nodes to construct the set of 
VNFs to be migrated in this round.  Specifically, when the resource 
utilization of node 𝑛 exceeds its threshold 𝜃, it is considered overloaded, 
as shown in the following formulas: 

𝑈𝑐𝑝𝑢(𝑛) =
𝑅𝑐𝑝𝑢_𝑢𝑠𝑒𝑑 (𝑛)
𝑅𝑐𝑝𝑢_𝑡𝑜𝑡𝑎𝑙(𝑛)

> 𝜃𝑐𝑝𝑢 (31)

𝑈𝑚𝑒𝑚(𝑛) =
𝑅𝑚𝑒𝑚_𝑢𝑠𝑒𝑑 (𝑛)
𝑅𝑚𝑒𝑚_𝑡𝑜𝑡𝑎𝑙(𝑛)

> 𝜃𝑚𝑒𝑚 (32)

When a node becomes overloaded, the migration trigger mechanism 
is activated, and the system further analyzes the resource consumption 
of each VNF within the node to select the VNF instances that need to 
be migrated. The goal of this stage is to prevent network congestion 
and QoS degradation caused by resource overload.

Stage two: Candidate Target Node Selection. After determining 
which VNF instances need to be migrated, an appropriate target node 
must be selected for migration. The construction of the candidate node 
set is based on the following two constraints: 1. Resource Constraint: 
The target node must have sufficient resources to accommodate the 
VNF to be migrated. 2. VNF Support Constraint: The target node must 
support the specific VNF type. The candidate target node set can be 
expressed as: 

𝑁𝑐𝑎𝑛
𝑣𝑖

= {𝑛𝑗 |𝑅𝑐𝑝𝑢(𝑛𝑗 ) ≥ 𝑉𝑐𝑝𝑢(𝑣𝑖) ∩ 𝑅𝑚𝑒𝑚(𝑛𝑗 ) ≥ 𝑉𝑚𝑒𝑚(𝑣𝑖)} (33)

Where 𝑉𝑐𝑝𝑢(𝑣𝑖) and 𝑉𝑚𝑒𝑚(𝑣𝑖) represent the CPU and memory re-
sources required by VNF 𝑣𝑖, respectively. 𝑁𝑐𝑎𝑛

𝑣𝑖
 represents the candidate 

target node set that satisfies the resource constraint. This stage ensures 
the feasibility of the migration and avoids migration failures due to 
insufficient resources at the target node.

Stage three: Fitness Function Design. In the proposed VNF migra-
tion optimization model, the core objective of the fitness function is 
to sum the three key performance indicators: migration cost, routing 
cost, and energy consumption cost, in order to comprehensively assess 
the overall performance of the candidate solutions. This function not 
only focuses on the efficiency of network resource utilization but also 
considers the extent to which service quality and resource constraints 
are satisfied during the migration process. 

𝐹 (𝑋) = 𝐶𝑡𝑜𝑡𝑎𝑙(𝑋) + 𝑃 (𝑋, 𝜆, 𝜇) (34)

The term 𝑃 (𝑋, 𝜆, 𝜇) is used to suppress solutions that violate re-
source constraints, representing the degree of violation. This term is 
activated when the CPU or memory resources of a node are overloaded, 
thus increasing the fitness value and forcing the algorithm to move 
away from infeasible solutions. This design approach directly adds up 
the three types of costs and is suitable for multi-objective optimization 
scenarios that require balancing multiple performance factors without 
a clear prioritization. Its advantage lies in being easy to interpret 
and implement, while also effectively constraining the generation of 
infeasible solutions through the penalty factor 𝜆. If the node resource 
usage exceeds its total capacity, the max function activates the penalty, 
thus increasing the fitness value.

Stage four: Multi-objective Optimization Solution. To further im-
prove the global optimality of migration decisions, a hybrid solution 
method based on Lagrangian Relaxation and Artificial Fish Swarm 
Algorithm is used in this paper. Lagrangian Relaxation Principle: La-
grangian relaxation introduces multipliers to convert the constraints 
into penalty terms and add them to the objective function for easier 
solving. In VNF migration, the goal is to minimize migration cost, 
energy consumption, and routing cost, while satisfying node resource 
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Fig. 2. Complete system operation implementation in Cernet.
constraints: 
𝑅𝑐𝑝𝑢_𝑢𝑠𝑒𝑑 (𝑛) ≤ 𝑅𝑐𝑝𝑢_𝑡𝑜𝑡𝑎𝑙(𝑛) (35)

𝑅𝑚𝑒𝑚_𝑢𝑠𝑒𝑑 (𝑛) ≤ 𝑅𝑚𝑒𝑚_𝑡𝑜𝑡𝑎𝑙(𝑛) (36)

Lagrangian multipliers 𝜆𝑛 and 𝜇𝑛 are introduced to penalize the 
resource constraints: 
𝑃 (𝑋, 𝜆, 𝜇) = 𝐹 (𝑋) +

∑

𝑛∈𝑁

(

𝜆𝑛 ⋅max(0, 𝑅𝑐𝑝𝑢_𝑢𝑠𝑒𝑑 (𝑛) − 𝑅𝑐𝑝𝑢_𝑡𝑜𝑡𝑎𝑙(𝑛))
)

+
∑

𝑛∈𝑁
𝜇𝑛 ⋅max(0, 𝑅𝑚𝑒𝑚_𝑢𝑠𝑒𝑑 (𝑛) − 𝑅𝑚𝑒𝑚_𝑡𝑜𝑡𝑎𝑙(𝑛))

(37)

In the optimization process, to gradually increase the penalty for 
resource constraints, a penalty factor 𝑝𝑒𝑛𝑎𝑙𝑡𝑦_𝑓𝑎𝑐𝑡𝑜𝑟 is introduced to 
dynamically adjust the update rate of the Lagrangian multipliers. It is 
defined as: 
𝑝𝑒𝑛𝑎𝑙𝑡𝑦_𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑃𝑏𝑎𝑠𝑒 ⋅ (1 + 𝑟 ⋅ 𝑡) (38)

where 𝑃𝑏𝑎𝑠𝑒 is the base penalty factor, which controls the initial penalty 
strength. 𝑟 is the penalty growth rate, which controls the speed of in-
crease of the penalty factor after each iteration. 𝑡 is the current iteration 
number. Update of Lagrangian Multipliers: After each iteration, the 
multipliers are updated as follows: 
𝜆(𝑡+1)𝑛 = max(0, 𝜆𝑡𝑛 + 𝛼 ⋅ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦_𝑓𝑎𝑐𝑡𝑜𝑟 ⋅ (𝑅𝑐𝑝𝑢_𝑢𝑠𝑒𝑑 (𝑛) − 𝑅𝑐𝑝𝑢_𝑡𝑜𝑡𝑎𝑙(𝑛))) (39)

𝜇(𝑡+1)
𝑛 = max(0, 𝜇𝑡

𝑛 + 𝛼 ⋅ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦_𝑓𝑎𝑐𝑡𝑜𝑟 ⋅ (𝑅𝑚𝑒𝑚_𝑢𝑠𝑒𝑑 (𝑛) −𝑅𝑚𝑒𝑚_𝑡𝑜𝑡𝑎𝑙(𝑛))) (40)

where 𝛼 is the learning rate, which controls the update speed of the 
multipliers.

Fish Behaviors in Algorithm 2: The fish behaviors consist of four 
main actions: Prey, Swarm, Follow, and Random Walk. The mathemat-
ical descriptions for each behavior are provided below. Prey Behavior: 
The fish in the swarm move toward a better position based on the 
fitness function of the target area. If the fitness of the new position 
is better, the fish moves to the new position. 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + step ⋅
(𝑋𝑗 (𝑡) −𝑋𝑖(𝑡))
‖𝑋𝑗 (𝑡) −𝑋𝑖(𝑡)‖

⋅ rand() (41)

Where 𝑋𝑗 (𝑡) is a random new position within the fish’s visibility 
range. If 𝑓 (𝑋𝑗 ) > 𝑓 (𝑋𝑖), the fish moves to the new position; otherwise, 
it performs a random move. 𝑓 (𝑋𝑖) represents the fitness at position 𝑋𝑖, 
and rand() is a random number between [0, 1].

Swarm Behavior: The fish exhibit a swarm behavior, moving toward 
the center of the surrounding fish to increase food concentration while 
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avoiding overcrowding. The center of the fish within the visibility range 
𝑋𝑐 is calculated as: 

𝑋𝑐 =

∑𝑛𝑓
𝑗=1 𝑋𝑗

𝑛𝑓
(42)

The movement equation is: 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + step ⋅
(𝑋𝑐 −𝑋𝑖(𝑡))
‖𝑋𝑐 −𝑋𝑖(𝑡)‖

⋅ rand() (43)

If 𝑓 (𝑋𝑐 ) > 𝑓 (𝑋𝑖) and 𝑛𝑓∕𝑁 < 𝛿, the fish move toward the center. 
𝑛𝑓  represents the number of fish in the visibility range, and 𝛿 is the 
crowding threshold.

Follow Behavior: Fish follow the best individual within their per-
ception range. The best fish position 𝑋𝑏 in the current visibility range 
is determined as: 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + step ⋅
(𝑋𝑏 −𝑋𝑖(𝑡))
‖𝑋𝑏 −𝑋𝑖(𝑡)‖

⋅ rand() (44)

Where 𝑋𝑏 is the position of the fish with the highest fitness in the 
current visibility range.

Random Walk: If the Prey, Swarm, and Follow behaviors cannot find 
a better solution, the fish will perform a random walk: 
𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + Visual ⋅ rand() (45)

Adaptive Step Length and Visual Range: The adaptive step length 
step and the visual range Visual gradually decrease with the number of 
iterations to improve convergence accuracy: 

Visual(𝑡) = Visualmin + (Visualmax − Visualmin) ⋅
(

1 − 𝑡
𝑇max

)

(46)

step(𝑡) = stepmin + (stepmax − stepmin) ⋅
(

1 − 𝑡
𝑇max

)

(47)

Where 𝑇max represents the maximum number of iterations. Visualmin
and stepmin represent the minimum visual range and step length, 
respectively. 

4.2. The procedure of the algorithm

As shown in Algorithm 1, lines 1 to 16 correspond to the implemen-
tation process of the algorithm. In the main workflow of the LFO-VNM 
algorithm, the priority of the Service Function Chains (SFCs) is first 
calculated according to the formula (line 1) to determine which SFCs 
should be prioritized. Next, the SFC requests are processed, and the list 
of Virtual Network Functions (VNFs) to be migrated is constructed (line 
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Algorithm 1: Lagrangian Fish Optimization for VNF Migra-
tion(LFO-VNM) Algorithm

Input: Physical network graph 𝐺(𝑁,𝐿), SFC requests, node 
resources

Output: VNF migration solution 𝑀𝑖𝑔𝑠

1 Calculate SFC priority based on Eqs. (7) ;
2 Get the list of VNFs to be migrated ;
3 Initialize Lagrangian multipliers 𝜆[node] for each node ;
4 for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 1 to 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
5  population, best_solution ← Call Algorithm 2 ;
6  penalty_factor ← according to Eqs. (38) ;
7 for each node in 𝑁 do
8  Calculate cpu_violation ;
9  Calculate memory_violation ;
10  adjustment ← penalty_factor × (cpu_violation + 

memory_violation) ;
11 𝜆[node] ← according to Eqs. (39)(40) ;
12 end 
13 end 
14 return 𝑀𝑖𝑔𝑠 ;

Algorithm 2: ASFA for Constrained VNF Migration
Input: Population, fitness function, constraints
Output: Population, best solution

1 Initialize population ← Call Algorithm 3 ;
2 pareto_front ← Ø;
3 Initialize BestSolution ← Population[0] ;
4 step ← according to Eqs. (46) ;
5 visual ← according to Eqs. (47) ;
6 for each fish in population do
7  NewSolution ← fish_behaviors() ;
8  if check constraints (14-24) then
9  update fitness ;
10  if NewFitness < BestFitness then
11  BestFitness ← NewFitness ;
12 end 
13 end 
14 for each individual in population do
15  if not dominated by any other individual in population

then
16  add individual to pareto_front ;
17 end 
18 end 
19 end 
20 return population, best_solution ;

Algorithm 3: Node Priority VNF Deployment
Input: SFC requests, node resources
Output: Placement of VNFs in the network

1 placement ← Ø; ;
2 Calculate node priority; ;
3 for each SFC in SFC_requests do
4 for each VNF in SFC.vnfs do
5  Get candidate nodes; ;
6  Select target_node; ;
7  placement[VNF] ← target_node; ;
8  update node resources; ;
9  Calculate node priority; ;
10 end 
11 end 
12 return placement; ;
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2). Then, the Lagrangian multipliers are initialized for each network 
node (line 3) to dynamically adjust and constrain resource allocation. 
Algorithm 2 is subsequently called for global search and optimization, 
while the calculated penalty factors are used to correct resource vio-
lations, gradually converging to the optimal VNF migration solution 
(lines 4–14).

Algorithm 2 first calls Algorithm 3 to generate an initial popula-
tion, where each individual represents a VNF migration solution, and 
creates a Pareto front set to store non-dominated solutions (lines 1–3). 
Next, the search parameters, including step size and visual range, are 
set (lines 4–5). Then, each individual in the population is iterated 
through, performing a random walk to generate new solutions. The 
constraints for each solution are checked, and if the solution satisfies 
the constraints, its fitness is calculated. The fitness is compared with 
the current best solution, and if necessary, the best solution and the 
Pareto front set are updated, ensuring a combination of global search 
and local fine-tuning (lines 6–14).

Algorithm 3 Begin with an empty placement map and compute a 
static priority score for every node based on residual CPU/memory, 
connectivity, and load-balancing factors (lines 1–2).construct a set of 
candidate nodes that satisfy CPU/memory capacity, VNF type match-
ing, and the remaining end-to-end latency budget of the corresponding 
SFC(line 3) its candidate node set by enforcing CPU, memory, and end-
to-end delay budget constraints (line 4). Select the candidate with the 
highest node-priority score (line 5), assign the VNF there (line 6), then 
deduct its resource demands and recompute that node’s score (line 7). 
Once all VNFs are placed, output this initial, constraint-aware mapping 
to Algorithm 2 for further refinement(lines 10–12).

5. Evaluation and discussion of results

In this section, we provide a detailed analysis and comparison of the 
performance of the proposed algorithm with other existing solutions. 
To validate the effectiveness of our algorithm in real-world application 
scenarios, we evaluate it on real network topologies. We use similar 
network, VNF, and SFC configurations to ensure the generality of the 
data.

5.1. Experimental and simulation parameter settings

Network topology: In this study, we use two real network topolo-
gies from the Zoo [33] database, namely Cernet (with 41 nodes and 59 
links) and Cogentco (with 197 nodes and 245 links). The nodes in the 
network are configured with CPU and memory resources in the range of 
[500, 1000] units. The bandwidth capacity of all physical links is set to 
[1000, 1500] Mbps, and the propagation delay is between [1, 10] ms.

SFC and VNF: In this paper, we define ten types of VNFs, with each 
SFC consisting of [2, 8] VNFs. The service rate ranges from [1, 10] 
Gbps. The maximum tolerable delay for services is divided into two 
categories: [80, 201] ms and [300, 501] ms, representing requests with 
different quality of service requirements. The source and destination 
nodes are randomly selected from the network topology. Additionally, 
the CPU and memory resource requirements for VNFs are configured 
according to the service rate, with every 10 Mbps of service requiring 
[1, 5] units of resource.

Algorithm parameters: In this simulation, we consider CPU, mem-
ory, and bandwidth of the physical network as equally important, and 
set 𝜔1, 𝜔2, and 𝜔3 to 1/3. Furthermore, in the migration mechanism, we 
set the node overload threshold to 0.4 to achieve more VNF migration 
across nodes effectively, as shown in Fig.  3.

5.2. Algorithm benchmark

In this simulation, our primary goal is to evaluate the overhead 
caused by VNF migration. We introduce two VNF migration algorithms, 
and the details of these algorithms are as follows:
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Fig. 3. Number of VNF migration.
LFO-VNM_Ran is a controlled variant of our proposed LFO-VNM 
algorithm in which the node-priority deployment step (Algorithm 3) is 
replaced by random placement. This isolates the benefit of our priority-
based deployment policy on both runtime and migration overhead.

MSH-OR [25] represents a multi-stage, rule-based heuristic: it se-
lects VNFs with the highest service rates on overloaded nodes and 
migrates them to lower-load destinations, minimizing end-to-end SFC 
delay while balancing network load. Its fast, greedy approach provides 
a load-aware benchmark.

DLAPM [18] exemplifies evolutionary optimization via a genetic 
algorithm that dynamically chooses subsets of VNFs for latency-aware 
migration, trading off total SFC delay against migration cost.

We selected MSH-OR and DLAPM as baselines because they respec-
tively represent two dominant VNF migration paradigms—heuristic and 
evolutionary—and both explicitly target node load balancing. Although 
they were originally designed to optimize ‘‘migration cost + latency’’, 
they can be directly evaluated in our extended ‘‘migration cost + 
routing cost + energy cost’’ objective space. Under the same topology 
and workload, this alignment ensures that observed performance dif-
ferences reflect each algorithm’s inherent advantages rather than mis-
matched evaluation criteria. By benchmarking LFO-VNM_Rand, MSH-
OR, and DLAPM, we demonstrate that our combined node-priority de-
ployment and global multi-objective optimization framework achieves 
lower overall migration overhead and faster runtime.

Fig.  4 shows the minimization results of these algorithms in terms of 
optimal total cost. The best fitness reflects the performance of the opti-
mization algorithm in achieving the objective. A lower total cost indi-
cates better optimization performance. The LFO-VNM method demon-
strates significant fitness optimization capability under both network 
topologies, effectively reducing the total cost. Particularly in large-
scale SFC scenarios, it outperforms MSH-OR and DLAPM by 13.6% 
and 13.8%, respectively, showing a clear advantage. Compared to the 
LIFO-VNM_Ran method, LFO-VNM exhibits better fitness, and under 
the Cogentco network topology, this difference gradually increases as 
the number of SFCs increases. The fitness is 3.4% to 4.7% lower than 
LFO-VNM_Ran.

Fig.  5 shows the minimization results of these algorithms in terms 
of optimal migration cost. On the Cernet network topology, the mi-
gration cost of LFO-VNM increases by 4.6% compared to the MSH-OR 
method. Although the migration cost has increased, this increase is 
acceptable considering the optimization of fitness. Compared to the 
LIFO-VNM_Ran method, the migration cost of LFO-VNM increases by 
2.1%, but the improvement in fitness and global optimization capability 
suggests that this cost is justified. Compared to the DLAPM method, 
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the migration cost of LFO-VNM increases by 7.1%, but DLAPM does 
not show significant advantages in migration cost optimization. On the 
Cogentco network topology, the migration cost of LFO-VNM is 12.3% 
higher than MSH-OR, but compared to the LIFO-VNM_Ran method, 
the migration cost decreases by 5.2%, demonstrating an advantage 
in migration optimization. Compared to DLAPM, the migration cost 
increases by 13.8%, but LFO-VNM provides a more comprehensive 
optimization capability, compensating for the increase in migration 
cost. Although LFO-VNM shows a slight increase in migration cost, its 
significant advantages in fitness and other key metrics make this cost 
acceptable. Especially when compared to the LIFO-VNM_Ran method, 
LFO-VNM shows better migration efficiency.

Fig.  6 shows the minimization results of these algorithms in terms 
of optimal routing cost. On the Cernet network topology, the routing 
cost of LFO-VNM increases by 13.2% compared to MSH-OR, but this 
increase is a necessary cost after optimizing other metrics. Compared to 
the LIFO-VNM_Ran method, the routing cost increases by 4.8%, which 
is still within an acceptable range, and the global optimization effect 
is more comprehensive. Compared to the DLAPM method, the routing 
cost increases by 17.6%, but LFO-VNM demonstrates stronger perfor-
mance in overall optimization. On the Cogentco network topology, the 
routing cost of LFO-VNM increases by 9.6% compared to MSH-OR and 
by 5.2% compared to LFO-VNM_Ran. However, compared to DLAPM, 
the increase in routing cost is smaller, and LFO-VNM still achieves a 
good balance with a more comprehensive optimization effect. The rout-
ing cost of LFO-VNM slightly increases under both network topologies, 
but this increase is the cost of optimizing other metrics, and its overall 
optimization effect remains superior to traditional methods.

Fig.  7 shows the minimization results of these algorithms in terms of 
optimal energy cost. This metric measures the cumulative node energy 
consumption generated by all running VNF instances in the network 
during the subsequent scheduling cycle after migration adjustment is 
complete. On the Cernet network topology, LFO-VNM demonstrates 
exceptional energy-saving capability, reducing energy consumption by 
56.2% compared to MSH-OR. Compared to DLAPM and LFO-VNM_Ran, 
energy consumption is also reduced by 56.2% and 2.9%, respectively. 
This advantage highlights the significant energy efficiency of LFO-
VNM, particularly in large-scale network environments, where it can 
effectively reduce energy consumption. On the Cogentco network topol-
ogy, LFO-VNM also shows outstanding energy efficiency, reducing 
energy consumption by 52.1% compared to MSH-OR. Its energy con-
sumption is the same as that of DLAPM, and there is minimal change 
in energy consumption compared to LFO-VNM_Ran, demonstrating its 
energy efficiency advantage in comprehensive optimization. In both
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Fig. 4. Best fitness of algorithms(minimal total cost found).
Fig. 5. Migration cost of algorithms.
Fig. 6. Routing cost of algorithms.
network topologies, the LFO-VNM method exhibits a significant advan-
tage in energy-saving.

Fig.  8 shows the minimization results of these algorithms in terms 
of runtime. On the Cernet network topology, LFO-VNM significantly 
reduces computation time, with a 26.0% reduction compared to MSH-
OR. Compared to LFO-VNM_Ran and DLAPM, the time overhead is 
reduced by 31.1% and 30.6%, respectively, demonstrating a significant 
improvement in computation efficiency with LFO-VNM. On the Co-
gentco network topology, LFO-VNM also shows a significant advantage 
in computation time, with the time cost reduced by 31.4% compared 
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to MSH-OR and by 30.2% compared to LFO-VNM_Ran, greatly improv-
ing the efficiency of the optimization process. LFO-VNM significantly 
reduces time overhead, exhibiting a clear computational efficiency ad-
vantage when handling large-scale SFCs. Compared to other methods, 
LFO-VNM provides optimization results in a shorter time.

The LFO-VNM algorithm demonstrates significant optimization ca-
pability across multiple network topologies. Compared to other tradi-
tional methods, LFO-VNM shows superior overall optimization perfor-
mance in key metrics such as total cost, migration cost, routing cost, 
energy consumption, and computation time, particularly in large-scale 
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Fig. 7. Energy cost of algorithms.
Fig. 8. Running time of algorithms.
SFC scenarios, where its advantages in energy efficiency and com-
putational efficiency are especially notable. Although migration cost 
and routing cost increase in some cases, these increases are acceptable 
when considering the improvements in fitness and global optimization 
capability. Therefore, the LFO-VNM algorithm exhibits strong prac-
ticality and application potential in balancing multiple optimization 
objectives and is well-suited for SFC optimization in large-scale network 
environments.

6. Conclusion

With the continuous development of Network Function Virtual-
ization (NFV) technology, the migration of Virtual Network Func-
tions (VNFs) and the optimization of Service Function Chains (SFCs) 
have become particularly important in dynamic network environments. 
This study proposes a VNF migration algorithm that combines pri-
ority awareness and multi-objective optimization, aiming to address 
the challenges faced by traditional methods in dynamic environments, 
including resource overload, service quality assurance, and trade-offs 
between multiple objectives. By constructing a Mixed-Integer Linear 
Programming (MILP) model and combining Lagrangian Relaxation and 
the Artificial Fish Swarm Algorithm (AFSA), we systematically quan-
tify the impact of VNF migration on network performance, migration 
cost, routing overhead, and energy consumption. Experimental results 
show that, compared to several existing algorithms, the proposed LFO-
VNM method demonstrates excellent optimization performance across 
various network topologies. Although migration costs increase slightly 
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in some cases, the improvement in overall optimization capability 
makes this increase acceptable. Particularly in large-scale network 
environments, the LFO-VNM method exhibits significant advantages 
in computational efficiency and energy efficiency. In future research, 
we aim to integrate machine learning algorithms to predict network 
load changes and further optimize resource scheduling, with the goal 
of enhancing the efficiency and stability of migration decisions and 
exploring more optimal solutions.
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